Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.04.490692

ABSTRACT

We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of the intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers releases fluorescent signal upon virus binding that is easily read by a hand-held fluorimeter for a rapid (in 10 mins), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (~ $1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1,000-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.


Subject(s)
HIV Infections , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.14.296715

ABSTRACT

We present a comprehensive vaccine strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by combining antigen optimization and nanoparticle display. We first developed a receptor binding domain (RBD)-specific antibody column for purification and displayed the RBD on self-assembling protein nanoparticles (SApNPs) using the SpyTag/SpyCatcher system. We then identified the heptad repeat 2 (HR2) stalk as a major cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2G{Delta}HR2), and displayed S2G{Delta}HR2 on three SApNPs with high yield, purity, and antigenicity. Compared to the RBD, the RBD-ferritin SApNP elicited a more potent murine neutralizing antibody (NAb) response on par with the spike. S2G{Delta}HR2 elicited two-fold-higher NAb titers than the proline-capped spike (S2P), while S2G{Delta}HR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2G{Delta}HR2-presenting I3-01v9 SApNP also induced critically needed T-cell immunity, thereby providing a next-generation vaccine candidate to battle the COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL